Coherency in Neutrino-Nucleus Elastic Scattering

S. Kerman, V. Sharma, M. Deniz, H. T. Wong[†], J.-W. Chen, H. B. Li, S. T. Lin, C.-P. Liu and Q. Yue (TEXONO Collaboration) Institute of Physics, Academia Sinica, Taipei, Taiwan

4th International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry December 29-31, 2016, NTHU, Hsinchu, Taiwan

* Coherency in Neutrino-Nucleus Elastic Scattering, Phys. Rev. D 93, 113006 (2016)

S. Kerman, V. Sharma, M. Deniz, H. T. Wong[†], J.-W. Chen, H. B. Coherency in Neutrino-Nucleus Elastic Scattering

イロト イポト イヨト イヨト

э

Introduction

Motivation

- νA_{el} process: A convenient channel to study the quantum mechanical coherency effects in electroweak interactions.
- The generic scale for coherency is: $E_{\nu} < 50 \text{ MeV}$.
- We focesed on *quantitative studies on the transitions towards decoherency*. Our theme's *objective is to quantify this transition—the first such investigation in the literature*.
- The degree of coherency is described by a measurable parameter (α) and the dependency of α parameter to the incoming neutrino energy, detector threshold, and target nucleus are examined.

ヘロト ヘアト ヘヨト ヘ

Formalism

$$\nu A_{el}: \nu + A(Z, N) \rightarrow \nu + A(Z, N).$$

The SM differential cross section of νA_{el} scattering:

$$\frac{d\sigma_{\nu A_{el}}}{dq^2}(q^2, E_{\nu}) = \frac{1}{2} \left[\frac{G_F^2}{4\pi} \right] \left[1 - \frac{q^2}{4E_{\nu}^2} \right] \\
\times \left[\varepsilon ZF_Z(q^2) - NF_N(q^2) \right]^2, \quad (1)$$

 $q^2 = 2MT + T^2 \simeq 2MT$. The total cross section:

$$\sigma_{\nu A_{el}} = \int_{q_{min}^2}^{q_{max}^2} \left[\frac{d\sigma_{\nu A_{el}}}{dq^2} (q^2, E_{\nu}) \right] dq^2.$$
(2)

For nuclear form factors the effective method is adapted,

$$F(q^2) = \left[\frac{3}{qR_0}\right] J_1(qR_0) \exp[-\frac{1}{2}q^2s^2], \qquad (3)$$

Dac

with parameters: $R_0^2 = R^2 - 5s^2$ and s = 0.5 fm.

Neutron and several different nuclei (*n*, *Ar*, *Ge*, *Xe*), compatible with exp. interest, are selected for studies {Z = (0, 18, 32, 54)}.

Fig. 1.(a) Nuclear form factor $F(q^2)$ as a function of T:

Fig. 1.(b) Total cross section ($\sigma_{\nu A_{el}}$) at $T_{min} = 0$ as a function of E_{ν} :

Figure 1: (a) Nuclear form factor $F(q^2)$ as a function of T, related by $q^2 = 2MT$; (b) Total cross section $(\sigma_{\nu A_{el}})$ at $T_{min} = 0$ as a function of E_{ν} . (*n*, *Ar*, *Ge*, *Xe*) nuclei are selected for illustrations.

Decoherency

Decoherency for $\sigma_{\nu A_{el}}$ is characterized by deviations from the $[\varepsilon Z - N]^2$ scaling as q^2 increases.

The scattering amplitude of individual nucleons adds with a finite relative phase angle to contribute to the cross section. The combined amplitude \mathcal{A} :

$$\mathcal{A} = \sum_{j=1}^{Z} e^{i\theta_j} \mathcal{X}_j + \sum_{k=1}^{N} e^{i\theta_k} \mathcal{Y}_k, \qquad (4)$$

イロト イボト イヨト イヨト 一日

 $(\mathcal{X}_j, \mathcal{Y}_k) = (-\varepsilon, 1)$: the coupling strengths for protons and neutrons; $e^{i\theta_j}(e^{i\theta_k})$: the phase for protons (neutrons).

$$\sigma_{\nu A_{e^{l}}} \propto \mathcal{A} \mathcal{A}^{\dagger} = \sum_{j=1}^{Z} \mathcal{X}_{j}^{2} + \sum_{k=1}^{N} \mathcal{Y}_{k}^{2}$$

$$+ \sum_{j=l+1}^{Z} \sum_{l=1}^{Z-1} \left[e^{i(\theta_{j} - \theta_{l})} + e^{-i(\theta_{j} - \theta_{l})} \right] \mathcal{X}_{j} \mathcal{X}_{l}$$

$$+ \sum_{k=m+1}^{N} \sum_{m=1}^{N-1} \left[e^{i(\theta_{k} - \theta_{m})} + e^{-i(\theta_{k} - \theta_{m})} \right] \mathcal{Y}_{k} \mathcal{Y}_{m}$$

$$+ \sum_{j=1}^{Z} \sum_{k=1}^{N} \left[e^{i(\theta_{j} - \theta_{k})} + e^{-i(\theta_{j} - \theta_{k})} \right] \mathcal{X}_{j} \mathcal{Y}_{k}.$$
(5)

The decoherence effects between any nucleon pairs is described by the average phase misalignment angle $\langle \phi \rangle \in [0, \pi/2]$:

$$\left[e^{i(\theta_j-\theta_k)}+e^{-i(\theta_j-\theta_k)}\right] = 2\cos(\theta_j-\theta_k) = 2\cos\langle\phi\rangle.$$
(6)

The degree of coherency can therefore be quantified by a measurable parameter $\alpha \equiv \cos \langle \phi \rangle \in [0, 1]$.

The cross-section ratio between A and neutron is:

$$\frac{\sigma_{\nu A_{el}}(Z,N)}{\sigma_{\nu A_{el}}(0,1)} = \{\varepsilon^2 Z + N + \varepsilon^2 Z(Z-1)\alpha \\
+ N(N-1)\alpha - 2\varepsilon Z N\alpha\} \\
= \{Z\varepsilon^2 [1+\alpha(Z-1)] + N [1+\alpha(N-1)] \\
- 2\alpha Z N\}.$$
(7)

The limiting conditions:

Full coherency: $\alpha = 1$; $\sigma_{\nu A_{el}} \propto [\varepsilon Z - N]^2$ Total decoherency: $\alpha = 0$; $\sigma_{\nu A_{el}} \propto [\varepsilon^2 Z + N]$. Partial coherency, the relative change in cross section, ξ :

$$\xi \equiv \frac{\sigma_{\nu A_{el}}(\alpha)}{\sigma_{\nu A_{el}}(\alpha = 1)} = \alpha + (1 - \alpha) \left[\frac{(\varepsilon^2 Z + N)}{(\varepsilon Z - N)^2} \right],$$
(8)

which varies linearly with α , and both are unity at=full coherency. S. Kerman, V. Sharma, M. Deniz, H. T. Wong[†], J.-W. Chen, H. B. Coherency in Neutrino-Nucleus Elastic Scattering

Numerical Results and Discussion

Numerical Analysis

The α contours on the (N, E_{ν}) plane at $T_{min} = 0$:

Figure 2: The α contours on the (*N*, E_{ν}) plane at $T_{min} = 0$, with bands of realistic neutrino sources and target nuclei superimposed.

Variations of α and ξ as functions of (a) E_{ν} at $T_{min} = 0$; (b) T_{min} at $E_{\nu} = 50 \text{ MeV}$:

Figure 3: Variations of α and ξ for *Ar*, *Ge*, *Xe* as functions of (a) E_{ν} at $T_{min} = 0$, and (b) T_{min} at $E_{\nu} = 50$ *MeV* where the end points correspond to maximum recoil energies.

Experimental studies of coherency would be performed with realistic neutrino sources.

The current projects: reactor $\overline{\nu}_e$, $DAR - \pi (\nu_\mu, \nu_e, \overline{\nu}_\mu)$ & the high energy solar-⁸*B* ν_e .

Figure 4: Neutrino spectra (Φ_{ν}) from reactor $\overline{\nu}_{e}$, $DAR - \pi (\nu_{\mu}, \nu_{e}, \overline{\nu}_{\mu})$, and solar-⁸*B* ν_{e} , normilized by their maxima. (b)Distributions of $[\Phi_{\nu} \cdot \sigma_{\nu A_{el}}]$ at $T_{min} = 0$, which are the weights in the averaging of (α , ξ) to provide measurements of ($\langle \alpha \rangle, \langle \xi \rangle$).

Dac

The values of $\langle \alpha \rangle$ at $T_{min} = 0$:

$ u \qquad \text{Half maxima of } [\Phi_{\nu} \cdot \sigma_{\nu A_{el}}] \qquad \langle \alpha \rangle \text{with}$				
source	in $E_{ u}$ (MeV)	Ar	Ge	Xe
Reactor $\overline{\nu}_{e}$	0.96 - 4.82	1.00	1.00	1.00
solar- ⁸ $B \nu_e$	5.6 – 11.9	0.99	0.99	0.98
$DAR - \pi \nu_{\mu}$	29.8	0.91	0.86	0.80
$DAR - \pi \nu_e$	27.3 – 49.8	0.89	0.83	0.76
$m{DAR} - \pi \overline{ u}_{m{e}}$	37.5 – 52.6	0.85	0.79	0.71

Table 1: The half maxima in the distributions of $[\Phi_{\nu} \cdot \sigma_{\nu A_{el}}]$ at $T_{min} = 0$ for the different neutrino sources, and the values of $\langle \alpha \rangle$ probed by the selected target nuclei.

イロト イボト イヨト イヨト 一日

For *Ge* variations of $(\langle \alpha \rangle, \langle \xi \rangle)$ with T_{min} with different ν sources :

Figure 5: Variations of $(\langle \alpha \rangle, \langle \xi \rangle)$ as a function of T_{min} with reactor $\overline{\nu}_e$, solar-⁸*B* ν_e and $DAR - \pi (\nu_{\mu}, \nu_{e}, \overline{\nu}_{\mu})$ for *Ge*. The end points correspond to maximum recoil energies allowed by kinematics.

The low energy reactor $\overline{\nu}_e$ and solar-⁸*B* ν_e probe the full coherency region ($\alpha > 0.9$), while $DAR - \pi\nu$'s allow measurements in the transition regions (0.9 > $\alpha > 0.1$).

THANK YOU

S. Kerman, V. Sharma, M. Deniz, H. T. Wong[†], J.-W. Chen, H. B. Coherency in Neutrino-Nucleus Elastic Scattering

(日) (四) (三) (三) (三)

ъ

DQC